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Global Energy Transition
Power-to-X Economy will be built on
renewable electricity and green hydrogen
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CO, Emissions: how it developed, where to go

Annual Carbon Emissions (+ve) and their Partitioning (-ve)
15

- Fossil Emissions (Eos)

Net Land-use Change Emissions (Eyuc)
ﬂj Atmospheric Growth (Gary)
|| andsink (Suamo)
|1 ocean sink (Socem)

CO, Flux (GtC yr™")
o

-10

GICO, yr

Net global CO, emissions

80 A

Key insights:

= CO, emissions are dominated
by fossil fuels

= Emissions are at historic
record levels

= Emissions have to reach
absolute zero
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Global energy transition: PtX Economy and hydrogen source: IPCC, 2020. 6th Assessment Report WG Il
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Electricity Heat Transport

Fossil-fuel condensing power station Gas heating Internal-combustion engine

Losses
Losses

Losses

Electricity Propulsion

40 % efficiency 85 % efficiency 25 - 40 % efficiency*
Wind/solar energy Heat pumps Electric mobility

100 % efficiency 340 % efficiency 80 % efficiency

Losses

Losses

Tomorrow

Propulsion

* The efficiency of internal-combustion engines in other applications (e.g. maritime transport, engine-driven power plants) can exceed 50 %.

Key insights:

= Solar energy resource availability is 1000x larger than
the global demand

Direct electricity use is highly efficient

Renewables costs have declined steeply and
continued: solar PV, wind power, batteries, electrolyser,
and others

Combination of these three major drivers leads to
massive uptake of solar PV

Perez R. and Perez M., 2009. A fundamental look on energy reserves for the planet.
The IEA SHC Solar Update, Volume 50

Brown, Breyer et al., 2018., Renewable and Sustainable Energy Reviews, 92, 834-847
IPCC, 2020. 6th Assessment Report WG Il
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annual installations [MWp]

Solar PV Installations: past and near Future C
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Key insights:

= Low-cost PV dominates one market after another, now Power-to-X plants

Silicon manufacturing capacity soon around 1 TW/a
No energy source has been ever phased in as steeply as PV

Wind power is similar to solar PV, but slightly slower in the phase-in
Solar PV shows the fastest phase-in in history (+30% annual installs in 2022)

Rising Sun

The growth rate of solar installations this year will hit its highest level in a
decade, and at far higher volume levels

M New installations  Change in installations, y/y

38% y/y

201 "2 13 14 15 16 7 18 19 20 21 '22 2023

Source: Bloomberg

Solar polysilicon — the semiconductor from which photovoltaic
panels are made — is growing even faster. Existing and planned
manufacturing capacity will amount to about 2.5 million metric tons
by 2025, according to research last week 0o from BloombergNEF’s
Yali Jiang. That’s sufficient to build 940 gigawatts of panels every

year.
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source: Breyer et al., 2021. Solar PV in 100% RE systems. Chapter 14 in Photovoltaics

Global energy transition: PtX Economy and hydrogen

Volume In: Encyclopedia of Sustainability Science and Technology, online

Christian Breyer P christian.breyer@lut.fi @ChristianOnRE Victoria et al.. 2021. Joule 5. 1041-1056
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Power Market Development: 2007 - 2021

Share of global capacity additions by technology

Empiric trends:
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Key insights:
PV and wind power dominate new installations, with clear growth trends for PV
Hydropower share declines, a consequence of overall capacity rise, and sustainability limits
Bioenergy (incl. waste) remain on a constant low share

New coal plants are close to fade out

New gas plants decline, with very high gas prices pushing them towards peaking operation
Nuclear is close to be negligible, the heated debate about new nuclear lacks empirical facts

Global energy transition: PtX Economy and hydrogen source: BNEF, Power Transition Trends 2022
Christian Breyer » christian.breyer@Ilut.fi % @ChristianOnRE
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Global: PV and Wind Share in 100% RE Studies

Wind penetration (%)
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Key insights:
= 3 main groups:
= High PV & wind: more PV
= High PV & wind: more wind
= Lower PV & wind
= PV share of around 50% by 2050 is
standard
= Group of studies with high PV shares
(70-80%) have all in common that they
anticipate continued PV cost decline
= PV strongly benefits from
electrification, low-cost batteries, low-
cost electrolysers, and Power-to-X
= Two studies with highest shares of PV
& wind in TPED have consequently
worked in Power-to-X
= Reasons for lower PV & wind shares
= High PV cost assumptions
= CSP forced in the mix, despite cost
= Bioenergy forced in the mix,

o 10 20 0 60 7080 90100 despite biodiversity issues
Solar PV penetration (%) = Low electrification rates
Global energy transition: PtX Economy and hydrogen source: Breyer et al., 2022. IEEE Access 10, 78176-78218
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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LUT Energy System Transition Model (LUT-ESTM)
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Key features:
full hourly resolution, applied in global-local studies, comprising about 120 technologies
used for several major reports, in about 50 scientific studies, published on all levels, including Nature
strong consideration on all kinds of Power-to-X (heat, fuels, chemicals, materials, freshwater, CO,, CDR, forests)

Global t ition: PtX E d hvd source: Bogdanov, Breyer et al., 2021. Full energy sector transition towards
°_ a_ energy transi Ior_" . conomy an_ ydrogen L 100% renewable energy supply: integrating power, heat, transport and
Christian Breyer P christian.breyer@Iut.fi @ChristianOnRE industry sectors including desalination, Applied Energy, 283, 116273
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What’s the role of electricity and hydrogen?

Guiding questions:

What types of energy services demands can be directly electrified?

What types of energy services demands cannot be electrified
(directly, indirectly) at all?

For all types of energy services demands which cannot be directly
electrified, what'’s the role of hydrogen?

For what types of energy services demands hydrogen is needed
directly?

Global energy transition: PtX Economy and hydrogen
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Global: 100% Renewable Energy System by 2050
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Key insights:
= Low-cost PV-wind-battery-electrolyser-DAC leads to a
i cost-neutral energy transition towards 2050

= Wind energy

e This implies about 63 TW of PV, 8 TW of wind power, 74
nens — TWhe,, of battery, 13 TW, of electrolysers by 2050 for
oo wscs the energy system
This leads to about 3 TW/a of PV, 850 GW,, of
o electrolyser installations in 2040s
PV contributes 69% of all primary energy
Massive investments are required, mainly for PV,

battery, heat pumps, wind power, electrolysers, PtX

M Fossil Gas

Global energy transition: PtX Economy and hydrogen source: Bogdanov et al., 2021. Energy, 227, 120467
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE EWG/LUT, 2019. Global Energy System based on 100% RE
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Key insights:

Electricity emerges to the dominant primary energy source (<5% » 90%), driven by low-cost and efficiency

Electricity share in final energy is not structurally changing (22% » 45%)

Transition from combustion-based to electron-based society is the fundamental driver, due to efficiency and low-cost
Power-to-X (heat, fuels, mobility, clean water, refined materials, chemicals) explains the discrepancy of TPED vs TFED
Electricity becomes challenging in discussions, as primary energy, secondary energy, energy carrier, final energy

It is NO contradiction to generate electricity and sell molecules, it’s just upstream and downstream business

Power-to-X economy and hydrogen source: Bogdanov et al., 2021. Energy, 227, 120467
Christian Breyer » christian.breyer@lut.fi % @ChristianOnRE EWG/LUT, 2019. Global Energy System based on 100% RE
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Global demand for e-fuels and e-chemicals (,
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Fuels and Chemicals in general:

steady growth of chemicals

methanol represents non-ammonia chemicals

liquid hydrocarbons are in steady decline, mainly due to electrification of road transportation

methane demand in decline until 2040 with increase till 2050, with uncertainty for hydrogen substitution
e-fuels and e-chemicals:

= first markets during 2020s by 2030
= strong growth over the decades reaching a volume of more than 40,000 TWh
= less uncertainty for e-chemicals
= highest uncertainty for e-methane demand due to substitution by e-hydrogen, e-ammonia, e-methanol
O e e e snOnkE iy e e ncasio e b
) ' transition across all sectors towards sustainability, RSER
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Sustainable e-fuels and e-chemcials
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Sustainable biomass is highly limited, since energy crops shall be
limited to zero due to food supply and biodiversity restrictions

All fuels can be produced based on electricity, water and air

All e-fuels production routes are technically available on high TRL
Methane is still listed by may not be required, as technically not
necessary, relatively high cost, AND high GWP due to leakage
Major challenge ahead: domestic self-supply in Europe or imports
of e-fuels?

source: Fasihi et al., PtL; Fasihi et al., PtA; Fasihi et al., PtH2; Fasihi et al., PtCH4;

8

12 Global energy transition: PtX Economy and hydrogen
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CO, as raw material for e-fuels and e-chemicals (,

CO, supply for hydrocarbon-based PtX - global CO, supply for hydrocarbon-based PtX - Europe
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= Finally, 80% of global CO, raw material demand needs to be covered by direct air capture (DAC), while
the DAC demand in Europe is slightly lower at 76%

= Industrial phase-in of DAC is critical in 2020s, as point sources are available, while DAC requires a first
market ramp-up for massive scaling in 2030s and 2040s

= DAC and carbon utilisation (DACCU) for e-fuels/chemicals is the first huge phase-in DAC deployment

= DAC of carbon and storage (DACCS) is expected to be the second huge phase for DAC demand starting
in 2040s (not included in diagrams)

source: Galimova et al., 2022. Global demand analysis for carbon dioxide as raw
material from key industrial sources and direct air capture to produce renewable
electricity-based fuels and chemicals, Journal of Cleaner Production, 373, 133920

Global energy transition: PtX Economy and hydrogen
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE



https://www.sciencedirect.com/science/article/pii/S0959652622034928
https://www.sciencedirect.com/science/article/pii/S0959652622034928
https://www.sciencedirect.com/science/article/pii/S0959652622034928
https://twitter.com/ChristianOnRE

Europe: Highly Ambitious Energy-Industry Transition
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. ricon = First energy-industry transition to 100% RE in Europe in 1-h & multi-regions
g I Ew,s = Industry: cement, steel, chemicals, aluminium, pulp & paper, other industries
s II o o = Energy-industry costs remain roughly stable
g =EEE  Erew = Scenario definition: zero CO, emissions in 2040
o B wae = Massive expansion of electricity would be required
0 =ty = e-fuels & e-chemicals ensure stable operation of transport & industry
i i = Nuclear: by scenario default phased out by 2040; it is NO critical system
B men component; finally countries will decide how to proceed
g o e ™ What's respected:
= 1.5 °C target & biodiversity & cost effectiveness & air pollution phase-out
= renewal of European energy-industry system & jobs growth
= Why society should not go for such an option?

1d hydrogen source: Greens/EFA, Accelerating the European RE
2020 2030 2040 2050 | @ChristianonRE SERENDI PD transition, Brussels, Sepember, 2022

Years
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System Outlook — Energy Flows in 2020

Europe - 2020
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Global energy transition: PtX Economy and hydrogen SEREND! source: Greens/EFA, Accelerating the European RE
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Power-to-X Economy as new characteristic Term

= Zero CO, emission low-cost energy system is based on electricity
= Core characteristic of energy in future: Power-to-X Economy
= Primary energy supply from renewable electricity: mainly PV plus wind power
Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X
Hydrogen is a subset of the PtX Economy
= Main demand: e-fuels (marine, aviation), e-chemicals, e-steel — ammonia, methanol kerosene jet fuel
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Progress in Photovoltaics

Key insights:

s

Week of most renewables supply (spring) and least

renewables supply (winter) is visualised

A 100% renewables-based and fully integrated energy
system in 2050 will function without fail every day of the
year: Even in the dark winter days the region easily copes

with energy demand

Key balancing components are electrolysers (Power-to-
H,-to-Fuels) that convert electricity to hydrogen, when

electricity is available, but drastically reduce their

utilisation in times of low electricity availability
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Energy flow Finland in future

= Case: self-supply of energy needs in Finland (except uranium supply)
= Energy supply based on wind power, bioenergy, solar PV
= Bioenergy largely for heat
= Very high electrification (direct, indirect)
Finland - BPS = Very low role for electricity storage
e = Pulp & Paper industry strongly impacts the energy system structure
= Export cases pending to be studied
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Hydrogen demand in a Power-to-X Economy

Table 1, Electricity and kydrogen demand across the epergy-industry system in 2030, 2040, and 2050 for
energy uses, steelmaking, and chemical feedstocks. The bydrogen demand is inked to electrolyser capacity
demand. The hydrogen demand 15 induced by Hi-based products demand and leads to CO; as raw matenal

?&ﬁ&;h};ﬁncaﬁuﬂs. Lower heating values (LHV) are used, and electrolyser efficiencies are alizned to - Hyd rogen is a subset of the PtX Economy
2030 2040 2050 ref u Main demand: e'fuels (marine, aViation), e'

Electricity demand for electrolysis ' , chemicals, e-steel - ammonia, methanol
Energy system TWha 348 17.069 48 908 [49] .

Steelmaking TWhy 2,718 5.621 6.284  [39] kerosene jet fuel

e ——iw—am—— * Primary energy supply from renewable
Hydrogen demand _ electricity: mainly PV plus wind power

Energy system TWhe 1y 356 11,529 34,244 [49] . . . .
Steelmaking TWhroom 1755 3772 1371 58] = Direct electrification wherever possible:
Chemical feedstocks TWhe 1y 1.825 11.690 23,122 [59] . H H H
— S 036 26901 e electric vehicles, heat pumps, desalination,
Electrolyser capacity - - . - = etc_

Enersv system B THY 2 252 . . pn R .
e e so1 L7 1200 5% = Indirect electrification for e-fuels (marine,
Chemical feedstocks GWr ey 613 3,112 6,208 [59] P - : - .

— . i 180 16709 aviation), e-chemicals, e-steel;

H; based products demand = Most routes are power-to-hydrogen-to-X
e-Hydrogen TWhe 1w 2,051 6,274 11,963  [40,58.50]

e-Methane TWhes v 78 778 7419 [49]

e-FTL fieelz TWherrrav 2 4,502 9442 [49] H
s T 1 s S = Numbers .shown here represent the highest
e-Ammonia TWheaz 76 828 165 19 ever published H, and H,-to-X demand
e-Methanol T W hagece: 1w 2,193 9,495 15,402 [59]

Total TWhawe v 4,492 11,877 48,354

CO; raw material demand

e-Methane MHCO: 14 153 1.458 [49]

e-FTL fieels Z'vﬂ{L:Oe 1 1373 2879 [49] Source:

:ighszha :ig 539 ;iisa 4568 Eﬁ% Breyer_ et al., 2023. The role of electric!ty-based hydrogen in the
Total MCO; 504 4,057 9128 emerging Power-to-X Economy, submitted

Galimova et al., 2023. Global trading of renewable electricity-based
19 Global energy transition: PtX Economy and hydrogen fuels and chemicals to enhance the energy transition across all
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE sectors towards sustainability, RSER



https://www.sciencedirect.com/science/article/pii/S1364032123002770
https://www.sciencedirect.com/science/article/pii/S1364032123002770
https://www.sciencedirect.com/science/article/pii/S1364032123002770

Summary & Outlook

Key elements of the arising energy-industry-CDR system are:
= Comprehensive electrification (direct, indirect) of all demands
= Dominating source of primary energy: solar PV and wind power complemented by others
= Hydrogen as a subset of the Power-to-X Economy
= CO, removal is essential for a safe climate and a sustainable civilisation
Role of hydrogen:

= Provide solutions when direct electrification is not possible, since the latter is typically more efficient
and lower in cost

= Main demand for hydrogen: e-fuels & e-chemicals (e-ammonia, e-methanol, e-kerosene jet fuel, e-
methane, e-hydrogen), e-materials (e-steel, e-carbon fibre)

= Hydrogen as an essential intermediate energy carrier in power-to-H,-to-X routes as a subset of the
Power-to-X Economy

= Upto 61,000 TWh,, demand by mid-century with up to 88,000 TWh,, demand
CO, evolves from an emission to a raw material to the core element for active climate regulation
= CO,-to-X in CCU approaches requires about 10 GtCO, as raw material

= CO,-to-X in CDR approaches requires about 40 GtCO, as input for climate regulation in a broad CDR
portfolio

Times are amazing, as the global energy-industry system of the present is comprehensively restructured,
while almost all core components are now roughly understood & already in the roll-out or ready for roll-out

Power-to-X economy and hydrogen
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Thank you for your attention ...
... and to the team!

all publications at: www.scopus.com/authid/detail.uri?authorld=39761029000

new publications also announced via Twitter: @ChristianOnRE &
-

Open your mind. LUT.

Lappeenranta University of Technology
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Background and insights:

2015 2020 2025 2030 2035 2040 2045 2050

Power sector analysed
World in 9 regions studied
Hourly resolution used
Transition till 2050 compared -
IEAWEO, Teske/DLR, LUT scenarios conS|dered

IEA WEO scenarios represent worst case: high cost
and lowest CO, reduction performance, also due to
higher cost of fossil CCS and nuclear

100% RE is doable for different paths: least cost with
higher PV share vs higher diversity for higher cost
Least cost power sector for 100% RE in 2030s

IEA WEO NZE2050 but also IRENA scenarios lack
transparence, thus could not be considered

Source:

Aghahosseini et
al., 2023. Applied

Energy, 331,
~ 120401
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Power-to-X Economy vs Hydrogen Economy (,

Power-to-X Economy: Hydrogen Economy:
90% of the entire energy-industry will be finally Hydrogen is a very important element of the
based on electricity as the dominating source of arising energy system
energy Hydrogen is typically NOT attractive as a final
Electricity can be converted in all forms of energy carrier
energy Hydrogen is serves mainly as intermediate
Electricity as final energy carrier is most energy carrier
attractive due to high efficiency Sources other than renewable electricity seem to
Power-to-X conversion can be found in all energy be not much relevant (cost, emissions, limits)

sectors in various forms

Power-to-X Economy vs Hydrogen Economy:
The arising energy system represents substantially more features of a Power-to-X Economy than of
hydrogen related features

Power-to-X Economy is the more inclusive & comprehensive description of the arising energy system

Global energy transition: PtX Economy and hydrogen
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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From top to bottom:
development of

« authors in the field
« articles published

« citations received
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=s=Breyer et al.

®=Jacobson et al. =o=Greiner et al. *=DLR/NEXT Energy

Key insights: Co o B e s
= Research field is growing at high dynamics v
= Entirely renewable systems research now established

= >1400 individual researchers involved in 100% RE articles

= Three leading teams: Lund et al. (Aalborg, DK), Breyer et al. (LUT, Fl), Jacobson et al. (Stanford, US)

!

International organisations are conservative in adoption of new insights, e.g. IPCC, IEA, World Bank, etc.

Global energy transition: PtX Economy and hydrogen
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE

source: Breyer et al., 2022. IEEE Access 10, 78176-78218
Khalili et al., 2022. IEEE Access, 10, 125792-125834
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Leading Energy System Models used in the Field C

Table 2. Energy system models used for 100% RE systems analyses. All models used at least five times for 100% RE systems
analyses are listed and ranked to the number of published articles applying the model. Some key features of the leading ESMs are
indicated. Citations for the 550 category one articles are allocated to the models used as of mid-2022.

citations model used for inter-
100% RE connected

EnergyPLAN 74 T797 1293 2006 2021 yes ves ves no no no ves no ves no
LUT-ESTM 63 2833 939 2015 2021 yes ves ves yes no yes ves  yes  yes no
HOMEER. 22 1298 310 2007 2021 no yes no no no yes ves no yes no
TIMES 19 745 134 2011 2021 no no ves yes no ves ves  yes  yes no
AU model 16 1313 134 2010 2018 yes yes no no no yes ves no yes no
PyPSA 16 704 274 2017 2021 yes yes yes no no yes no no yes no
LOADMATCH 10 1188 302 2015 2021 no yes yes no no no ves  yes  yes no
REMix 10 604 147 2016 2021 yes yes ves no no yes ves no ves no
GENeSYS-MOD 10 226 90 2017 2021 yes no ves no no yes no ves no no
ISA model 9 183 62 2016 2021 no yes yes no no yes no no yes no
NEMO 7 647 84 2012 2017 yes ves no no no ves no no yes no
H,RES 6 715 84 2004 2011 no yes yes no no no yes 1o yes no
MESAP/PlaNet 6 270 51 2000 2021 no no yes no no no ves  yes  yes no
others 282 11709 2362

total 550 30232 6226

= Two leading energy system models for 100% RE system studies are EnergyPLAN and LUT-ESTM
= PyPSA to join the group of leading models
= Not a single model analysed CO, direct removal (CDR) and off-grid electrification integration

Industry sector inclusion only by two models: LUT-ESTM & TIMES, while PyPSA joined in the meantime

Global energy transition: PtX Economy and hydrogen source: Khalili and Breyer, 2022. IEEE Access, 10, 125792-125834
Christian Breyer » christian.breyer@lut.fi @ChristianOnRE
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Research on e-fuels demand in global studies

Table 1. Global 100% renewable energy system analyses. A threshold of minimum 95%
renewables share in at least the electricity supply was considered for inclusion in the table.
This criterion was applied to include the near-100% RE system analyses, but also to ensure
appearance of fossil energy-free solution structures. Abbreviation: simulation (Sim),
optimisation (Opt), power sector (P), all sectors (A), transition (T), overnight (O), e-hydrogen
(e-H:), e-methane (e-CHs), power-to-liquids (PtL), CO- via electricity-based direct air capture
(e-C0g2), total primary energy demand (TPED).

s

Key insights :

= All following insights are for global
energy system studies

= All energy system studies are limited

Model Type Temporal Sectors Path  eH:  Hotofuel eCHs ePtL  eCO: efuels sharein
resolution total TPED
[TWh] [TWh] [TWh] [TWh] [MtCO [TWh]  [%]
Luderer et al. (2021) [REMIND-MAgPIE Opt  annual T 10,833 1] 10833 79%
[62]
Teske etal (2021) [Mesap/PlaNet Sim  houry' T 10,349 0 1750 12099 106%
[44) (DLR-EM), annual
TRAEM, [RIE
24/T, [RIE-SPACE

Bogdanov et al. LUT-ESTM Opt  hourly T 40,153 31253 8590 12872 334 0162 201
(2021) [29]
Jacobson et al. LOADMATCH, Sim 30- 0 2585 0 25985 31%
(2019) [63] GATOR-GCMOM seconds
Bogdanov et al. LUT-ESTM Opt  hourly T 1238 1238 932 932 1.6%
(2019) 712
Pursiheimo et al. VTT-TIMES Opt  time shces T 19,062 0 11814 30876 15.8%
(2019) (28]
Teskeetal (2018) [Mesap/PlaMNet Sim  annual T 6068 0 1496 8364 96%
[74] (DLE-EM)
Jacobson et al. LOADMATCH, Sim 30- 0 4528 0 4528 32%
(2018) [B4] GATOR-GCMOM seconds
Loffleretal (2017) [GEMeSYS-MOD  Opt  time slices T X 0 nla nia
[65]
Jacobson et al. GATOR-GCMOM  Sim  annual 0 A7 0 4517 38%
(2017) [85]
Breyer etal. (2017) [LUT-ESM Opt  hourly 0 963 %63 725 725 nia
73]
Sqouridiz et al. MNETSET Sim  annual T n'a nia n'a nia
(2016 [86]
Plessmann et al. MRESOM Opt  hourly 0 nla nia 1,960 1960 nia
(2014) [T1]
Dengetal (2012)  [Ecofys Sim  annual T 1875 ] 1875 26
[67]
Teskeetal (2011)  [Mesap/PlaNet Sim  annual T 1996 0 1996 15
[B7] (DLE-EM)
Jacobson and GATOR-GCMOM  Sim  annual 0 29619 0 29819 19.7%
Delucchi (2009) [38],
(2011) [69], (89
Serenzen (1995) [90] [unspecified Sim  annual 0 4380 0 4380 41%

= Not a single energy system study

exists with all five major e-
fuels/chemicals

Integrated Assessment Models for
IPCC lack any insights beyond
hydrogen

Only two teams model e-liquids

Only two teams model e-methane
e-hydrogen is a standard feature
Only one team uses e-CO,

Highest e-fuels demand around 30,000
TWh - but e-chemicals are missing
Highest e-hydrogen demand around
40,000 TWh w/o chemicals

Low results for e-fuels/chemicals due
to outdated PV cost and high biofuel
assumptions

source: Galimova et al., 2023. Global trading of renewable
electricity-based fuels and chemicals to enhance the energy
transition across all sectors towards sustainability, RSER
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